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Definition

Let C be a smooth irreducible projective curve of genus g and let J
be its Jacobian variety. Over the complex, J has the structure of a
complex torus

J (C) ∼= Cg/Λ,

where Λ is a full rank lattice, called period lattice of C.

For every basis ω1, . . . , ωg of the space of holomorphic differentials
Ω1
C we have that

Λ ∼=
{∫

γ
ω̄, γ ∈ H1(C,Z)

}
⊂ Cg,

where ω̄ = (ω1, . . . , ωg) and H1(C,Z) ∼= Z2g is the first homology
group of the curve.
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Definition (cont.)

Choosing a symplectic basis αi , βj (1 ≤ i, j ≤ g) of H1(C,Z), we
define the matrices

ΩA =
(∫

αi

ω̄

)
and ΩB =

(∫
βi

ω̄

)

and call big period matrix the concatenated matrix

Ω = (ΩA,ΩB) ∈ Cg×2g

such that Λ = ΩZ2g. We obtain a small period matrix in the
Siegel upper half-space via

τ = Ω−1
A ΩB ∈ Hg.
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Applications in number theory

Period matrices or more generally, integration of differential forms
on a Riemann surface, are required for computing

• the Abel-Jacobi map

A : C → J , P 7→
∫ P

P0

ω̄ mod Λ,

• Theta functions

Θ(z, τ) =
∑
v∈Zg

exp(2πi((1/2) vTτv + vT z)),

• the endomorphism ring End(J ) (numerical approximation),
• the real period of J (appearing in the BSD conjecture),
• the regulator pairing for K2 of curves.
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Existing work

For genus 1, 2 and 3 period matrices can be computed in almost
linear time to arbitrary precision (AGM, Borchardt mean).
For modular curves, termwise integration of modular forms is
possible and very efficient.

For hyperelliptic curves of arbitrary genus there exist
• a Magma implementation due to P. van Wamelen,
• a Matlab implementation due to Frauendiener and Klein.

For general algebraic curves there are
• a Maple implementation due to Deconinck and van Hoeij,
• a Python/Sage implementation due to Swierczewski,
• a Matlab implementation due to Frauendiener and Klein,
• a Sage implementation due to Bruin is in progress.
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Essential tasks

Starting from an affine equation for the curve

f (x, y) = 0,

we obtain a period matrix by working through the following list:

• computing a basis of holomorphic differentials
• choosing integration path → analytic continuation
• numerical integration
• use the monodromy to compute a homology basis
• compute intersection matrix and symplectic base change
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Our work (soon available)

Magma implementation for general algebraic curves (A1):
• based on the approach of Deconinck and van Hoeij,
• computes differentials using Magma’s function fields,
• uses spanning tree methods to construct paths,
• analytic continuation is done via root approximation methods,
• employs the double-exponential integration scheme.

Compared to the Maple implementation, we compute period
matrices
• much faster and more reliably,
• to higher precision,
• for higher genera.
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New algorithm for supereliptic curves

Consider a superelliptic curve given by an equation of the form

C : ym = f (x),

where m ≥ 2, deg(f ) ≥ 3 and f ∈ C[x] is separable.

For such curves (in joint work with Pascal Molin) we developed
and implemented algorithms in Magma and Arb (A2) that
rigorously compute period matrices and the Abel-Jacobi map.
More precisely:
• ’arbitrary’ precision (realistically ≈ 10000 digits)
• excellent scaling with the genus (g >> 1000 possible)
• extremely fast and numerically robust
• better than Magma for hyperelliptic curves



New algorithm for supereliptic curves

Consider a superelliptic curve given by an equation of the form

C : ym = f (x),

where m ≥ 2, deg(f ) ≥ 3 and f ∈ C[x] is separable.
For such curves (in joint work with Pascal Molin) we developed
and implemented algorithms in Magma and Arb (A2) that
rigorously compute period matrices and the Abel-Jacobi map.

More precisely:
• ’arbitrary’ precision (realistically ≈ 10000 digits)
• excellent scaling with the genus (g >> 1000 possible)
• extremely fast and numerically robust
• better than Magma for hyperelliptic curves



New algorithm for supereliptic curves

Consider a superelliptic curve given by an equation of the form

C : ym = f (x),

where m ≥ 2, deg(f ) ≥ 3 and f ∈ C[x] is separable.
For such curves (in joint work with Pascal Molin) we developed
and implemented algorithms in Magma and Arb (A2) that
rigorously compute period matrices and the Abel-Jacobi map.
More precisely:
• ’arbitrary’ precision (realistically ≈ 10000 digits)
• excellent scaling with the genus (g >> 1000 possible)
• extremely fast and numerically robust
• better than Magma for hyperelliptic curves



Timings

Computation* of τ ∈ Hg for the family of curves given by
• fn = (x + y)n−1 + xny2 + 1 up to 20 significant digits

n 2 3 4 5 6 7 8 9 10
g 1 2 6 10 14 21 28 35 45

tMaple 2.1s 6s 39s 2m 10s error 6m 45s 12m 58s - error
tA1 0.3s 0.8s 4.5s 15s 44s 2m 22s 5m 14s 12m 37s 30m 45s

• fm,n = ym −
∑n

k=0 xk up to 500 significant digits

(m,n) (2,5) (2,11) (2,31) (2,101) (3,5) (3,11) (7,5) (77,5) (11,21) (31,21)
g 2 5 15 50 4 10 12 152 100 300

tA1 32s 2m 30s 33m - 1m 4s 5m 27s 4m 36s - 38m -
tA2 0.2s 0.6s 3.7s 39s 4.8s 15s 6.7s 1m 26s 2m 4s 11m 14s

tMagma 1.6s 6.7s 1m 23s - / / / / / /

*done on Intel Xeon(R) CPU E3-1275 V2 3.50GHz processor.
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